Abstract
Three different methods to prepare 1,4-diazidobuta-1,3-dienes
are presented: nucleophilic substitution of electron-poor dichlorinated
substrates, nucleophilic addition of hydrazoic acid at an electron-deficient
diallene, and a sequence of prototropic isomerizations of propargyl
sulfones followed by nucleophilic additions. In all cases, isolation
and assignment of the diastereomeric products was possible, and
some sequential reactions, such as reduction or 1,3-dipolar cycloaddition
of the azido groups, were performed.
Key words
allenes - alkynes - azides - cycloaddition - dienes - isomerisation - nucleophilic
addition - nucleophilic substitution
References
<A NAME="RT23411SS-1">1 </A> For part 26, see:
Firdous S.
Banert K.
Auer AA.
Chem. Eur. J.
2011,
17 ,
in press
For reviews on vinyl azides, see:
<A NAME="RT23411SS-2A">2a </A>
Banert K. In Houben-Weyl
Vol. E15:
Kropf H.
Schaumann E.
Thieme;
Stuttgart:
1993.
p.818-875
<A NAME="RT23411SS-2B">2b </A>
Hassner A. In Azides and Nitrenes
Scriven EFV.
Academic Press;
Orlando:
1984.
p.35-76
<A NAME="RT23411SS-2C">2c </A>
Banert K. In Organic Azides: Syntheses and Applications
Bräse S.
Banert K.
Wiley;
Chichester:
2010.
p.115-166
<A NAME="RT23411SS-2D">2d </A>
Collier SJ. In Science of Synthesis
Vol.
33:
Molander GA.
Thieme;
Stuttgart:
2006.
p.541-563
<A NAME="RT23411SS-2E">2e </A>
Smolinsky G.
Pryde CA. In The Chemistry
of the Azido Group
Patai S.
Wiley;
New York:
1971.
p.555-585
<A NAME="RT23411SS-3A">3a </A>
Padwa A.
Blacklock TJ.
Carlsen PHJ.
Pulwer M.
J. Org. Chem.
1979,
44:
3281
<A NAME="RT23411SS-3B">3b </A>
Padwa A.
Smolanoff J.
Tremper A.
J.
Org. Chem.
1976,
41:
543
<A NAME="RT23411SS-4">4 </A>
Hassner A.
Levy LA.
J. Am. Chem. Soc.
1965,
87:
4203
<A NAME="RT23411SS-5">5 </A> For a review, see:
Hassner A.
Acc. Chem. Res.
1971,
4:
9
<A NAME="RT23411SS-6">6 </A>
Hassner A.
Keogh J.
Tetrahedron Lett.
1975,
1575
<A NAME="RT23411SS-7A">7a </A>
Banert K.
Köhler F.
Angew.
Chem. Int. Ed.
2001,
40:
174 ; Angew. Chem. 2001 , 113 , 173
<A NAME="RT23411SS-7B">7b </A>
Banert K.
Grimme S.
Herges R.
Heß K.
Köhler F.
Mück-Lichtenfeld C.
Würthwein E.-U.
Chem. Eur. J.
2006,
12:
7467
<A NAME="RT23411SS-8">8 </A>
Gallagher TC.
Storr RC.
Tetrahedron Lett.
1981,
22:
2905
<A NAME="RT23411SS-9A">9a </A>
Farmer EH.
J. Chem. Soc., Trans.
1923,
123:
2531
<A NAME="RT23411SS-9B">9b </A>
Baeyer A.
Rupe H.
Justus Liebigs Ann. Chem.
1890,
256:
1
<A NAME="RT23411SS-10A">10a </A>
Treibs W.
Walther H.
Chem.
Ber.
1955,
88:
396
<A NAME="RT23411SS-10B">10b </A>
Roeding A.
Kiepert K.
Chem. Ber.
1955,
88:
733
<A NAME="RT23411SS-10C">10c </A>
Treibs W.
Zimmermann G.
Chem. Ber.
1957,
90:
1146
<A NAME="RT23411SS-11">11 </A>
The trans ,trans structure of the higher-melting diastereoisomer
of 7 was discussed,¹² and
the crystal and molecular structure of dimethyl trans ,trans -2,5-dichloro-muconate was determined
by single-crystal X-ray diffraction techniques.¹³ In
the latter case, however, neither the melting point nor other information
on 7 including the method used to prepare
this compound were given. Thus, the found (Z ,Z )-configuration could not be assigned
to the substances depicted in Scheme
[² ]
.
<A NAME="RT23411SS-12">12 </A>
Takei S.
Nakajima M.
Tomida I.
Chem.
Ber.
1956,
89:
263
<A NAME="RT23411SS-13">13 </A>
Einspahr H.
Donohue J.
Acta Crystallogr., Sect. B:
Struct. Sci.
1973,
29:
1875
<A NAME="RT23411SS-14A">14a </A>
Vögeli U.
von Philipsborn W.
Org. Magn. Reson.
1975,
7:
617
<A NAME="RT23411SS-14B">14b </A>
Braun S.
Org.
Magn. Reson.
1978,
11:
197
<A NAME="RT23411SS-15A">15a </A>
Nesmeyanov AN.
Rybinskaya MI.
Kelekhsaeva TG.
J.
Org. Chem. USSR (Engl. Transl.)
1968,
4:
897
<A NAME="RT23411SS-15B">15b </A>
Rybinskaya MI.
Nesmeyanov AN.
Kochetkov NK.
Russ. Chem. Rev. (Engl. Transl.)
1969,
38:
433
<A NAME="RT23411SS-16">16 </A> For another example of configuration
change due to the formation of the thermodynamically favored vinyl
azide, see:
Jonas J.
Mazal C.
Rappoport Z.
J. Phys. Org. Chem.
1994,
7:
652
<A NAME="RT23411SS-17">17 </A>
Tietze LF.
Eicher T.
Reaktionen
und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium
Thieme;
Stuttgart:
1991.
p.40
<A NAME="RT23411SS-18">18 </A>
Cai B.-z.
Blackburn GM.
Synth. Commun.
1997,
27:
3943
<A NAME="RT23411SS-19A">19a </A>
Palacios F.
Aparicio D.
de los Santos JM.
Perez de Heredia I.
Rubiales G.
Org. Prep. Proced. Int.
1995,
27:
171
<A NAME="RT23411SS-19B">19b </A>
Fendel W.
Dissertation
TU Chemnitz;
Germany:
1997.
<A NAME="RT23411SS-19C">19c </A>
Duncan M.
Gallagher MJ.
Org. Magn. Reson.
1981,
15:
37
<A NAME="RT23411SS-20">20 </A>
Thyagarajan BS.
Glaspy PE.
Baker E.
Org.
Mass Spectrom.
1980,
15:
224
<A NAME="RT23411SS-21">21 </A> For a review on acceptor-substituted
allenes, see:
Banert K.
Lehmann J.
In Modern Allene Chemistry
Krause N.
Hashmi ASK.
Wiley-VCH;
Weinheim:
2004.
p.359
<A NAME="RT23411SS-22">22 </A>
Organic
Azides: Syntheses and Applications
Bräse S.
Banert K.
John
Wiley & Sons Ltd.;
Chichester:
2010.
<A NAME="RT23411SS-23">23 </A>
Sheldrick GM.
SHELXTL
Version 5.1, An Integrated System for Solving, Refining and Displaying
Crystal Structures from Diffraction Data
Siemens
Analytical X-ray Instruments;
Madison WI:
1990.